Chain analysis loading poles

ICT stands for green!
History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>25-08-2015</td>
<td>Frits Wuts</td>
<td>Initial version</td>
</tr>
<tr>
<td>0.2</td>
<td>09-09-2016</td>
<td>Léon Huijsdens/Frits Wuts</td>
<td>Addition GreenFlux loading pole information</td>
</tr>
<tr>
<td>1.0</td>
<td>10-09-2016</td>
<td>Frits Wuts</td>
<td>Adjustment calculationsBerekeningen aangepast</td>
</tr>
<tr>
<td>1.1</td>
<td>14-09-2016</td>
<td>Frits Wuts</td>
<td>Adjustment incorrect emission factor</td>
</tr>
<tr>
<td>1.2</td>
<td>24-10-2016</td>
<td>Frits Wuts</td>
<td>Extension with regard to 2017</td>
</tr>
<tr>
<td>2.0</td>
<td>30-05-2017</td>
<td>Frits Wuts</td>
<td>Extension with production and recycling car and loading pole.</td>
</tr>
<tr>
<td>3.0</td>
<td>10-04-2018</td>
<td>Mark van Eesteren</td>
<td>Update with 2017 CO₂ reduction</td>
</tr>
<tr>
<td>4.0</td>
<td>18-07-2019</td>
<td>Mark van Eesteren</td>
<td>Update with 2018 CO₂ reduction</td>
</tr>
<tr>
<td>4.1</td>
<td>19-08-2019</td>
<td>Mark van Eesteren</td>
<td>Update with 2018 CO₂ reduction based on updated CO₂ conversion factor for electricity</td>
</tr>
<tr>
<td>Ref</td>
<td>Title</td>
<td>Author</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CO2-Prestatieladder. Generiek Handboek</td>
<td>http://www.skao.nl/</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Production consumes more energy than use</td>
<td>http://computerworld.nl/algemeen/74646-fabricage-kost-meer-energie-dan-gebruik</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Installation and assembly loading pole</td>
<td>https://www.laadpaal24.nl/laadpaal-montage</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The Correspondent</td>
<td>https://decorrespondent.nl/6601/waarom-de-elektrische-auto-nu-al-groener-rijdt-maar-er-betere-argumenten-zijn-om-over-te-stappen/694075842075-4e3a4cf5</td>
<td></td>
</tr>
</tbody>
</table>
1 Introduction .. 5
 1.1 Chain analysis subjects .. 5
 1.2 Aim and research question .. 5

2 Method .. 6
 2.1 Chain analysis .. 6
 2.2 Data collection ... 6
 2.3 Calculation and modelling ... 6
 2.4 Demarcation ... 6

3 Collaborating parties .. 7
 3.1 GreenFlux .. 7
 3.2 BOM .. 7

4 The loading pole .. 8
 4.1 Chain overview loading pole ... 8
 4.2 Production steel and PCB .. 8
 4.3 Production loading poles ... 8
 4.4 Transport and installation .. 8
 4.5 Loading poles maintenance .. 9
 4.6 Demolition and recycling loading poles .. 9
 4.7 Conclusion CO₂-emission 2016 ... 9

5 The passenger car ... 10
 5.1 Chain analysis passenger car .. 10
 5.2 Producing the passenger car .. 10
 5.3 Fuel production .. 11

6 Emission fuel electric car (only consumption) .. 13
 6.1 Emission electric driving 2015 ... 13
 6.2 Emission reduction 2015 .. 13
 6.3 Prognose emission reduction 2016-2020 ... 13
 6.4 Emission 2016 electric driving ... 13
 6.5 Conclusion CO₂-emission 2016 ... 14
 6.6 Emission 2017 electric driving ... 14
 6.7 Conclusion CO₂-emission 2017 ... 14
 6.8 Emission 2018 electric driving ... 14
 6.9 Conclusion CO₂-emission 2018 ... 15

7 Emission reduction based on the TNO report (production + recycling) 16
 7.1 Conclusion CO₂-emission reduction 2016 ... 16
 7.2 Conclusion CO₂-emission reduction 2017 ... 16
 7.3 Conclusion CO₂-emission reduction 2018 ... 16

8 Planning 2017 (increase enthusiasm) .. 17
 8.1 Reduction measures ... 17
 8.1.1 Measure: Collect information about the use of loading poles 17
 8.1.2 Measure: remote management loading poles .. 17

9 Authorisation ... 18

Appendix A Chain overview .. 19

Appendix B Total electricity production in the Netherlands .. 20
1 Introduction

ICT Group profile

ICT Group N.V. (ICT) is a leading industrial technology solutions and services providers offering high quality technological solutions in the information and communication technology areas within various functional domains, especially within Automotive, Logistics, Machine & Systems, Industrial Automation, Energy and Healthcare. ICT is active within the Netherlands, Belgium, France, Bulgaria and the United States.

The ICT solutions offered to clients involve software development, solutions on project basis, the secondment of experienced and highly educated staff as well as services to maintain IT systems.

Corporate social responsibility

For ICT sustainability is a natural and inevitable part of our daily work. In our day-to-day we pay attention to the sustainable use of energy and materials. We separately collect our waste and products we use are recycled as much as possible. Within ICT mobility is very important. Therefore, ICT has started an initiative to make it possible to drive electric. Also, charging stations are or will be placed at the offices to extend the possibility electric driving and promote this.

Active sustainability policy

Related to corporate social responsibility ICT is executing an active sustainability policy. Part of this is the participation in the ‘CO₂ prestatieladder’.

To underline that ICT wants to have an active sustainability role, ICT participates into the CO₂ performance ladder. A part of the CO₂ performance ladder is to take initiative into a development project that facilities the sector in CO₂ reduction. This is recorded in the CO₂ performance ladder manual section 4.A.1. [REF 1]. This document provides an insight in how ICT fills in this chain analysis and fulfil the requirements as recorded in the CO₂ performance ladder.

1.1 Chain analysis subjects

In the order of scope 3 emissions it is concluded that the loading project which is managed by the Energy unit is one of the project for which it is expected that a large CO₂ reduction can be achieved. Furthermore, loading poles has a lot of growth potential in the market. That’s why this project is chosen as subject for a chain analysis.

1.2 Aim and research question

The aim of this analysis is to investigate the size of the CO₂ reduction based on ICT’s participation in GreenFlux.

Based on chain analysis actions can be determined on which basis emissions can be reduced and/or avoided. This results in action for the coming 4 years which is used by ICT and chain partners. This chain analysis is an additions on the already existing knowledge and views to the subject. It therefore contributes to advancing social insight. The chain analysis report is public, so that improvement possibilities can also applied by other organisations.
2 Method
This chapter describes the assumptions in this chain analysis and described the used method.

2.1 Chain analysis

2.2 Data collection
For the chain analysis data is collection about the current energy intake for the loading poles managed by GreenFlux. Also data is collection about the growth of the energy intake in the past. This gives an indication about the expected growth of the energy intake for the coming years.

During the literature study also other chain analysis related to the CO₂ performance ladder are studied. For aspects which are not measurable or no data is available estimates are substantiated. ICT has tried to write the chain analysis in association with GreenFlux.

2.3 Calculation and modelling
Based on the above mentioned data calculation a historical insight in the number of loading transaction and the number of kWh per loading transactions is takes by electric vehicles is obtained.

The number of kWh is converted into number of kilometres. The number of kilometres per kWh depends on a number of aspects, like the type and weight of the car. We used a careful and conservative estimate of 5 kilometre per kWh. It is possible that this value increases during the next years.

Next to this the CO₂ emission per electric kilometres is turned off against the CO₂ per fossil fuel kilometre.

Also the CO₂ emissions of the production and recycling in the chain is taken into account.

The calculations executed with use of the collected data and the conversion factor of the website www.CO2emissiefactoren.nl

2.4 Demarcation
Based on the CO₂ performance ladder requirement the focus in the chain analysis is on the indicator Global Warming which is expressed in CO₂ emission. Besides CO₂ reduction loading poles can result in cost reduction for GreenFlux clients. The extent of the cost reduction is not investigated in this chain analysis.
3 Collaborating parties

3.1 GreenFlux
The possibility to drive an environment friendly car with renewable energy is attractive for a lot of people. Also, the circumstances to drive an electric vehicle are ideal in this country. The distances to travel are sort and The Netherlands a reliable and extensive power grid. But also in other European countries the market share of electric vehicles is increasing.

As from 2012 Greenflux is active in the market of electric driving. The past years GreenFlux together with ICT has developed a unique platform: GSOP.

GSOP provides the execution of loading transaction, the steering of loading poles from a distance and the managing of the clients, loading passes and invoicing. ICT is in favour of open standards to make it possible there is interoperability between the supplies. GSOP fully uses the international standards OCPP and OSCP. ICT also participates in the introduction of the new standard OCPI on which basis loading pole operators and service providers can exchange information.

3.2 BOM
The BOM is enhancing the economy of Brabant by stimulating collaborating between companies, governments and other entities. This by attracting foreign companies, the development of company location and risk-bearing investment in starting and growing innovative entities. In the Letter of Intent ICT announces that it has the intention to together with the Brabante Ontwikkelings Maatschappij (BOM) to invest in GreenFlux, a loading pole operator and service provider for electric transport. Thanks to this investments GreenFlux enhances their position in the fast growing market for electric driving and is the possibility arises to accelerate the launch of innovative loading services.

Through the collaboration between GreenFlux, ICT and BOM an unique combination of knowledge about electric driving, the energy domain and innovative IT solutions exists.
4 The loading pole

GreenFlux maintains a national network of loading poles. This network is extending the coming years. The loading poles are used by drivers of electric vehicles. The driver executes a loading transaction, and pending on the loading pole costs are associated with the use.

The loading poles are equipped with energy meters which measure the amount of energy delivered per transaction. The transaction and related amount of energy are centrally registered.

Concerning the energy suppliers for loading poles there are two situations to distinguish:

- GreenFlux has determined the energy supplies.
- GreenFlux has a contract with XXX, the energy supplied is 100% green.
- The loading pole owner has determined the energy supplies. In that case it is not guaranteed that the energy supplied is 100% green.

Therefore, we have used a calculated energy mix.

4.1 Chain overview loading pole

4.2 Production steel and PCB

As GreenFlux currently does not have own loading poles and makes uses of loading poles of another supplies by which the electronics are replaced with hardware with software of ICT we do not have an influence on the CO₂ emission. As GreenFlux is busy with their own loading poles we did calculate the CO₂ emission.

<table>
<thead>
<tr>
<th>Production – each loading pole</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading pole steel</td>
<td>50 kg</td>
<td>0,473 kg CO₂/kg steel</td>
<td>23 kg CO₂</td>
</tr>
<tr>
<td>Electronics</td>
<td>Dedicated Computer</td>
<td>-</td>
<td>230 kg CO₂</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>253 kg CO₂</td>
<td></td>
</tr>
</tbody>
</table>

4.3 Production loading poles

For the production of the loading poles the same reasoning counts as recorded in paragraph 4.2. GreenFlux does not have an influence in the loading poles production process. Furthermore, this are only hours to produce the loading pole. The CO₂ emission is expected to be minimal.

4.4 Transport and installation

The transport of the hardware cabinet and the software to the location we take an average of 200 kilometres. For 2016 we expect a supply of 400 loadings resulting into a CO₂ emission of 200 km x 220 gr/km x 400 = 17,6 ton CO₂.
4.5 Loading poles maintenance
Based on the remote monitoring we expect 90% less rides for maintenance. The number of faults is 550 on a yearly basis from which 90% is solved with remote monitoring. The 55 maintenance services are locally executed for which an average distance of 200 kilometres is used. This result in the following CO₂ emission 200 km x 220gr/km x 55 = 2.42 ton CO₂.

If we assume that the remaining 495 faults are solved with remote monitoring this results in a CO₂ reduction of 200 km x 495 x 220 g/km = 21.8 ton CO₂ in 2016. So remote monitoring adds 21.8 – 2.42 = 19.4 ton of CO₂-reduction.

4.6 Demolition and recycling loading poles
How many loading poles will be recycled on a yearly basis and how long the useful of loading pole will be is unknown currently.

4.7 Conclusion CO₂-emission 2016
Summarized the CO₂ emission will be 17.6 + 2.42 = 20 ton for 2016 with respect to the loading poles. If we add the reduction of 21.8 ton for the remote monitoring the CO₂ emission and reduction are almost equal to each other.
5 The passenger car
The below data is collected based on the 2013 TNO rapport (source 4). Because the TNO report is a report written in Dutch the pictures are in Dutch.

5.1 Chain analysis passenger car

Figure 1 chain analysis passenger car.

This analysis contains the following 3 phases:

- Producing the car (mining materials, producing materials, producing the passenger car, using the car, demolition of the car and recycling the car).
- Producing the fuel (gasoline, grey and green electricity); mining primary energy source, transport energy source, producing the fuel, distributing the fuel, use the fuel in the car.
- Driving the car.

5.2 Producing the passenger car
The CO₂ emission in the production of the vehicle is determined by mining and producing the needed materials, transporting the materials and the assembly.
The TNO investigators had calculated the average from 5 investigations to different sort car batteries between 2008 and 2013 and concluded that with the production of a battery 150 kg CO₂ emission is released per KwH battery capacity.

If we assume that an electric car must have 60 kWh at least, the production of a battery is causing 9 ton CO₂.

5.3 Fuel production

Based on the current electricity mix (15% green and 85% grey electricity, from which mainly gas based) TNO has calculated a release of 447 gram CO₂ per kWh\(^1\).

The production of green energy is causing 36 gram CO₂ per kWh on average which is including the production of solar panels and windmills.

These numbers must be compared with the CO₂ emission released in the production of gasoline. This is 57 gram per kWh. This is only the CO₂ related to the mining and refining of the gasoline.

\(^{1}\) Zie Appendix B
Burning gasoline is causing 170 gram CO₂ per kilometre on average which is a representative number for a modern small middle-class car. If we assume that 220,000 kilometres is driven this causes 37.4 ton CO₂.

An electric car is not causing CO₂ emission, because the CO₂ emission is 0 when driving an electric car.

![Figure 6. Amount CO₂ emission driving a car.](image)

Figure 6. Amount CO₂ emission driving a car.

![Figure 7 CO₂ emissions conventional and electric cars based on 220.000 kilometres. This is including the production, maintenance, demolition and recycling of the car.](image)

Figure 7 CO₂ emissions conventional and electric cars based on 220.000 kilometres. This is including the production, maintenance, demolition and recycling of the car.

Summarizing: The production of the battery of the electric is causing extra CO₂ emission on a single basis. However if we drive this car based on the current energy mix in the Netherlands the average electric car is releasing less CO₂ than an average gasoline car. As the production of the car and the electricity in the end are responsible for a smaller part of the CO₂ emission than the actual driving.
6 Emission fuel electric car (only consumption)

6.1 Emission electric driving 2015
What is the contribution of ICT related to the energy reduction following the participation in GreenFlux. In the month November 2015 110.794 kWh is used related to the loading poles of GreenFlux. Based on the TTW the calculations are as following:

Table 2 emission based on the kWh amount

<table>
<thead>
<tr>
<th>CO₂ emission Electric driving 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situation November 2015</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>110.794</td>
</tr>
</tbody>
</table>

*) 5 km/kWh

If we use the same kilometres for the fuel car the CO₂ emission calculations are as following:

Table 3 emission based a fossil fuel with the same number of kilometres:

<table>
<thead>
<tr>
<th>CO₂ emission Fossil fuel driving 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situation November 2015</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>553.970</td>
</tr>
</tbody>
</table>

6.2 Emission reduction 2015
Based on the above calculation we can conclude that replacing fossil fuel kilometres has resulted in a CO₂ reduction of 69.0 ton (121.8 – 52.8) over the month November 2015.

On 17 November 2015 ICT started to participate in GreenFlux for 24.49%. Proportionally a CO₂ reduction of 69.0 * 0.2449 * 1.5 = 25.3 ton has been achieved over 2015.

6.3 Prognose emission reduction 2016-2020
We expect, based the historical data, a growth of 50% on a yearly basis (based on the expectation of GreenFlux) in the amount of delivered kWh, and also in CO₂ reduction. For 2016 this results in CO₂ reduction of 828,0 CO₂ ton (69,0*12)

Table 1 Reduction 2016-2020

<table>
<thead>
<tr>
<th>CO₂ emission and reduction in tons (prognose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>CO₂ emission</td>
</tr>
<tr>
<td>Reduction</td>
</tr>
</tbody>
</table>

6.4 Emission 2016 electric driving
For 2016 the following data is obtained from GreenFlux.

Table 2 Emission related to numer of kWh

<table>
<thead>
<tr>
<th>CO₂ emission electric driving 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
</tr>
<tr>
<td>1.068.952</td>
</tr>
</tbody>
</table>

Also the number km/kWh will increase the coming years. If we assume the number of kilometres is the same for a fossil fuel car the following CO₂ emission is calculated

Table 6 CO₂-emission fossil fuel car based on the same number of kilometres

<table>
<thead>
<tr>
<th>CO₂ emission Fossil fuel driving 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
</tr>
<tr>
<td>5.344.760</td>
</tr>
</tbody>
</table>

² 20% green and 80% grey electricity
6.5 Conclusion CO₂-emission 2016

Based on previous page we can conclude that the replacement of fossil kilometres in electric kilometres in 2016 has resulted in a reduction of 665.9 ton CO₂ (1,175,8 – 509,9).

Based on the participation of ICT in GreenFlux of 24,49% the CO₂ reduction related to ICT is 665,9 x 0,2449 = 163,1 ton.

The above results in the conclusion that the actual CO₂ reduction of 665,9 ton is behind the forecasted CO₂ emission reduction of 828 ton.

ICT only has an indirect influence on this CO₂ reduction as the effects take place by GreenFlux and their chain partners. To come up with innovative solutions we can contribute to CO₂ emission reduction.

ICT will report on the progress of the CO₂ reductions on a semi-annual basis.

6.6 Emission 2017 electric driving

For 2017 the following data is obtained from GreenFlux.

Table 7 Emission related to number of kWh

<table>
<thead>
<tr>
<th>CO₂ emission electric driving 2017</th>
<th>kWh</th>
<th>Emission factor</th>
<th>Total emission</th>
<th>Kilometres</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>3,197,883</td>
<td>477 CO₂ g/kWh</td>
<td>1,525,4 ton CO₂</td>
<td>15,989,415</td>
</tr>
</tbody>
</table>

Also the number km/kWh will increase the coming years. If we assume the number of kilometres is the same for a fossil fuel car the following CO₂ emission is calculated

Table 8 CO₂-emission fossil fuel car based on the same number of kilometres

<table>
<thead>
<tr>
<th>CO₂ emission Fossil fuel driving 2017</th>
<th>Kilometres</th>
<th>CO₂ g/km</th>
<th>Total emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>15,989,415</td>
<td>220</td>
<td>3,517,7 ton CO₂</td>
</tr>
</tbody>
</table>

6.7 Conclusion CO₂-emission 2017

Based on the above calculation we can conclude that the replacement of fossil kilometres in electric kilometres in 2017 has resulted in a reduction of 1,992,3 ton CO₂ (3517,7 – 1,525,4).

Based on the participation of ICT in GreenFlux of 24,49% the CO₂ reduction related to ICT is 1,992,3 x 0,2449 = 487,9 ton.

The above results in the conclusion that the actual CO₂ reduction of 1,992,3 ton is above the forecasted CO₂ emission reduction of 1,242 ton.

ICT only has an indirect influence on this CO₂ reduction as the effects take place by GreenFlux and their chain partners. To come up with innovative solutions we can contribute to CO₂ emission reduction.

ICT will report on the progress of the CO₂ reductions on a semi-annual basis.

6.8 Emission 2018 electric driving

For 2018 the KWh data in table 7 is obtained from GreenFlux.

Compared to previous years the emission factor is updated from 477 CO₂ g/kWh to 591 CO₂ g/kWh as the basic conversion factor for electricity changed. Additionally, we have investigated if the green/ grey electricity has changed in the past years based on investigations. We noticed that no reliable investigations are available which provide an updated on the grey / green electricity mix. Therefore, we still use the 85% (grey) / 15% (green) mix.

This results into an conversion of 591 CO₂ g/kWh (85% x 649 CO₂ g/kWh).
Table 7 Emission related to number of kWh

<table>
<thead>
<tr>
<th>Year</th>
<th>kWh</th>
<th>Emission factor</th>
<th>Total emission</th>
<th>Kilometres</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>7,319,812</td>
<td>591 CO$_2$ g/kWh</td>
<td>4,750.56 ton CO$_2$</td>
<td>36,599.060</td>
</tr>
</tbody>
</table>

Also the number km/kWh will increase the coming years. If we assume the number of kilometres is the same for a fossil fuel car the following CO$_2$ emission is calculated.

Table 8 CO$_2$-emission fossil fuel car based on the same number of kilometres

<table>
<thead>
<tr>
<th>Year</th>
<th>Kilometres</th>
<th>CO$_2$ g/km</th>
<th>Total emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>36,599.060</td>
<td>220</td>
<td>7,319.81 ton CO$_2$</td>
</tr>
</tbody>
</table>

6.9 Conclusion CO$_2$-emission 2018

Based on the above calculation we can conclude that the replacement of fossil kilometres in electric kilometres in 2018 has resulted in a reduction of 2,569.25 ton CO$_2$ (7,319.81 – 4,750.56).

Based on the participation of ICT in GreenFlux of 19.57% the CO$_2$ reduction related to ICT is 2,569.25 x 0.1957 = 503 ton.

The above results in the conclusion that the actual CO$_2$ reduction of 2,569.25 ton is above the forecasted CO$_2$ emission reduction of 1,863 ton.

ICT only has an indirect influence on this CO$_2$ reduction as the effects take place by GreenFlux and their chain partners. To come up with innovative solutions we can contribute to CO$_2$ emission reduction.

ICT will report on the progress of the CO$_2$ reductions on a semi-annual basis.
7 Emission reduction based on the TNO report (production + recycling)

Based on figure 6 of the 2013 TNO report the CO₂ emission of electric cars is at least 30% less than the CO₂ emission of a conventional fuel car. This percentage will increase the coming years as we will be able to make more use of green electricity. This is further elaborated in the below table.

The CO₂ emission following a comparable use of fossil fuel 1.175.8 ton, refer table 6. Based on an increasing percentage of at least 30% less CO₂ emission in 2016 if an electric car is used we have calculated the following prognose.

Table 9 Prognose reduction 2016-2019 including car production

<table>
<thead>
<tr>
<th>Year</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated CO₂-emission fossil fuel</td>
<td>1.462</td>
<td>2.193</td>
<td>3.290</td>
<td>4.935</td>
</tr>
<tr>
<td>Percentage relative to fossil fuel (including production and recycling)</td>
<td>30%</td>
<td>35%</td>
<td>40%</td>
<td>45%</td>
</tr>
<tr>
<td>CO₂ emission (including production and recycling)</td>
<td>1.023</td>
<td>1.425</td>
<td>1.974</td>
<td>2.715</td>
</tr>
<tr>
<td>Reduction</td>
<td>438</td>
<td>767</td>
<td>1.316</td>
<td>2.221</td>
</tr>
</tbody>
</table>

For the actual reduction, see the below table.

Table 3 Actual reduction 2016-2019 including car production

<table>
<thead>
<tr>
<th>Year</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated CO₂-emission fossil fuel</td>
<td>1.175.8</td>
<td>3.517.7</td>
<td>7.319.8</td>
<td></td>
</tr>
<tr>
<td>Percentage relative to fossil fuel (including production and recycling)</td>
<td>30%</td>
<td>35%</td>
<td>40%</td>
<td>45%</td>
</tr>
<tr>
<td>CO₂ emission (including production and recycling)</td>
<td>823.1</td>
<td>2.286.5</td>
<td>4.391.9</td>
<td></td>
</tr>
<tr>
<td>Reduction</td>
<td>352.7</td>
<td>1.231.2</td>
<td>2.927.9</td>
<td></td>
</tr>
</tbody>
</table>

7.1 Conclusion CO₂-emission reduction 2016

If we also take into the production and recycling of car in the determination of the CO₂ emission reduction, and we use 220.000 kilometres as driven kilometres during the lifetime of the car. The actual CO₂ emission reduction is not 665.9 ton, but 352.7 ton for the year 2016.

7.2 Conclusion CO₂-emission reduction 2017

If we also take into the production and recycling of car in the determination of the CO₂ emission reduction, and we use 220.000 kilometres as driven kilometres during the lifetime of the car. The actual CO₂ emission reduction is not 1.992.3 ton, but 1.231.2 ton for the year 2017.

7.3 Conclusion CO₂-emission reduction 2018

If we also take into the production and recycling of car in the determination of the CO₂ emission reduction, and we use 220.000 kilometres as driven kilometres during the lifetime of the car. The actual CO₂ emission reduction is not 2.569.3 ton, but 2.927.9 ton for the year 2018.
8 Planning 2017 (increase enthusiasm)

Reduction possibilities in energy and CO₂ emission:

- Promote driving electric vehicles.
- Temporary use of electric vehicles by colleagues.
- Increase possibilities to lease an electric vehicle.
- Monitoring use and driven kilometres.
- Social charging (app on phone, which give a signal when the electric vehicle is fully loaded).
- Show calculations of costs of an electric vehicle compared to a fossil fuel car.

8.1 Reduction measures

The reduction is mainly realised through the forecast grow in the use of GreenFlux loading poles. The measure ICT has to take is to maintain the GreenFlux loading pole network. ICT is responsible for the technical systems of GreenFlux.

There are two measures described:

- Collect further information with respect to the use of the loading poles.
- Remote management of the loading poles.

8.1.1 Measure: Collect information about the use of loading poles

In chapter 7 a forecast is recorded with respect to the CO₂ reduction by drivers of electric vehicles who are using GreenFlux loading poles. From time to time the collected transaction data is discussed with GreenFlux to verify if the forecasted growth and CO₂ reduction is in line with the realised CO₂ reduction.

8.1.2 Measure: remote management loading poles

With this chain analysis the ICT advisors has a clear story about the sustainable participation in the energy sector. Only the remote management on the loading poles must be optimized. This can be realised by reducing the visits to the loading poles what result in a positive effect on CO₂ reduction.
9 Authorisation

<table>
<thead>
<tr>
<th>Initials</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19-08-2019</td>
</tr>
</tbody>
</table>

Mark van Eesteren – Financial Controller ICT Group N.V.

Jan-Willem Wienbelt – Chief Financial Officer ICT Group N.V.
Appendix A Chain overview

Based on the TNO 2015 R 10386 report the below chain in the production of electric vehicles and fossil fuel cars is presented together with the chain of the loading poles.

Figure 8 – Chain overview.
Appendix B Total electricity production in the Netherlands

Wat betekent dit voor de CO₂-uitstoot?

TNO komt voor de huidige leveringsmix (één vijfde groen en vier vijfde grijs, waarvan het meeste gas) uit op 447 gram CO₂ per kWh. Gooi om te weten is dat de CO₂-uitstoot van kolencentrales circa twee keer zo hoog ligt als bij gascentrales.